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ABSTRACT

Ultrasonic and electrostatic levitation techniques have allowed the experimental
investigation of the nonlinear oscillatory dynamics of free droplets with diameter between
0.1 and 0.4 cm. The measurement of the resonance frequencies of the first three normal
modes of large amplitude shape oscillations in an electric field of varying magnitude has
been carried out with and without surface charges for weakly conducting liquids in air.
These oscillations of nonspherical levitated drops have been driven by either modulating
the ultrasonic field or by using a time-varying electric field, and the free decay from the
oscillatory state has been recorded. A decrease in the resonance frequency of the driven
fundamental quadruple mode has been measured for increasing oblate deformation in the
absence of an electric field. Similarly, a decrease in this frequency has also been found for
increasing DC electric field magnitude. A soft nonlinearity exists in the amplitude
dependence of the resonant mode frequencies for freely decaying as well as ultrasonically
and electrically driven uncharged drops. This decrease in resonance frequency is
accentuated by the presence of free surface charge on the drop. Subharmonic resonance
excitation has been observed for drops in atime-varying electric field, and hysteresis exists
for resonant modes driven to large amplitude. Mode coupling from lower-order resonances
to higher-order modes has been found to be very weak, even for fairly large amplitude
shape oscillations. Most of these results are in general agreement with predictions from
recent analytical and numerical investigations.
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1. INTRODUCTION

The dynamics of isolated and freely suspended drops are of fundamental interest
because of their inherent nonlinear characteristics, but also because of the practical need for
an understanding of the governing physical mechanisms in natural and industrial processes
involving disperse two-phase systems. In particular, evidence has been obtained indicating
that the induction of drop shape oscillations can lead to an enhancement of mass and heat
transfer. Thisis relevant to applications in industrial processes involving solvent extraction
and direct contact heat exchangers!-3. At the same time, progress in levitation technology
has introduced the possibility of investigating the properties of materials in the liquid state
under conditions only obtainable for levitated samples 4-6. In this context, the accuracy of
measurements of the surface properties of acoustically, electrostatically, or
electromagnetically levitated melts depends on our knowledge of the often nonlinear
dynamics of the droplets. An understanding of the levitation field effects on the drop
response is aso required to interpret the associated experimental observations. Although
the small amplitude shape oscillations of totally free and spherical liquid drops are well
understood, they are very seldom applicable to actual Earth-based physical systems. The
need for atheoretical understanding of large amplitude oscillations of deformed drops thus
provides the motivation for the rigorous and detailed measurement of their characteristics.

The large amplitude shape oscillations of isolated free drops have been extensively
examined in recent years, although the emphasis of the theoretical work has been mainly
on inviscid or weakly viscous liquids. A great deal of insight on the dynamics of free
droplets has been gained in the initial oscillatory phase "as well asin the asymptotic driven
stead y state and free decay stages’ 13. Thus, over the past two decade, an impressive array
of investigations using both analytical and numerical techniques has addressed the problem
of axisymmetric large amplitude oscillations of inviscid drops, and partial corroboration
with experimental findings has been obtained 14-15 . More recently, however, nonlinear
treatments of viscous drop oscillations have been proposed 1617 | and their predictions
have been favorably compared with experimental results based on the observations of
drops detached from a nozzle and freely falling under the influence of gravity and
aerodynamic drag.



From the available evidence to date, the salient and widely accepted nonlinear
characteristic appears to be the decrease in resonance frequency of the fundamental shape
oscillation mode with increasing oscillation amplitude. In this case, both analytical and
numerical methods predict a quadratic dependence of the frequency on the oscillation
amplitude. Experimental results obtained using acoustically levitated droplets in an
immiscible host 14 as well as data from free droplets falling in air '5 are in general
agreement with these theoretical predictions. Another finding is that the inclusion of
significant viscosity in the numerical simulations of 1 arge amplitude free decaying drop
dynamics reduces the imbalance between the time durations of the oblate and prolate
configurations for the fundamental mode, and it prevents resonant mode coupling predicted
by inviscid theoretical treatments, Numerical modelling has aso suggested that the initial
configuration of the droplet influences its subsequent dynamical behavior in the free decay
phase 16 .

The work described in this paper deals with the experimental study of small and
large amplitude shape oscillations of single low-viscosity drops acoustically levitated in air
and in the presence of a constant or time-varying electric field. Although some results
based on low gravity experiments carried out in space will be discussed, the bulk of the
discussion concerns free drops levitated on Earth. The shape altering capabilities associated
with combined acoustic and electrostatic levitation must therefore be taken into account
when a comparison is made between theoretical predictions and experimental findings.
This subtle field-drop interaction is the primary motivation for thisinvestigation, A parallel
experimental study of the oscillations of bubbles and drops immersed in a liquid has also
been carried out concurrently, and the results are reported elsewhere 18.

Published theoretical treatments have addressed the equilibrium shape and stability
of charged and uncharged dropsin an electric field. Sone of the earlier analytical work was
performed by Taylor 19 and Brazier-Smith et al. 20 by assuming a spheroidal shape for the
drop. The result was a reasonably accurate evaluation of the equilibrium shape and of the
natural resonance frequencies. Numerical computations have also been carried out by
Miksis 21, Adornato and Brown 22 Basaran and Striven 23, and Pelekasis and
Tsamopoulos 24 for the equilibrium shape. Tsamopoulos and Brown 25, Tsamopoulos,
Akylas, and Brown 26, Natarajan and Brown 27, Feng and Beard 28 , and Kang 29, have
theoretically studied the effects of electric fields and charges on shape oscillations, the
resonant modes coupling process, and the break-up of charged drops in electric fields.



More recently, Feng and Leal 30 have formulated a numerical code to investigate the static
shape and nonlinear oscillations of drops in both static and time-periodic electric fields.

It appears that a substantial theoretical foundation for the understanding of the
dynamics of charged and uncharged conducting drop in electric fields has been laid. In this
paper, we wish to describe experimental results which can be compared with some of the
theoretica predictions advanced in the publications mentioned above.

The physical system of interest is a free, single-phase liquid droplet of low
viscosity surrounded by a gaseous medium at rest. The drop can carry a free surface
electrical charge with magnitude varying between zero and the Rayleigh limit, and it can be
conducting or insulating. The primary scientific interest is in the dynamic response of the
drop to an excitation by time-varying ultrasonic and/or electric stress fields: steady-state
driven as well as free decaying shape oscillations are to be examined to characterize the
resonant response. The drop will therefore be under the influence of both acoustic radiation
pressure and electrical forces. In the Earth’s gravitational field, theinitial equilibrium shape
of alevitated drop will be primarily determined by its surface tension and by the ultrasonic
field intensity in the absence of an electric field. The static and dynamic effects of the
electric field will thus be quantified relative to the equilibrium oblate shaped drop
determined by the ultrasonic stress distribution over the drop surface. This reference state
can aso be experimentally examined by setting the electric field to zero.

The following sections of the paper will deal first with a discussion of the
experimental approach. Results of the measurement of the equilibrium shape of levitated
drops as a function of the absolute and relative magnitude of the electric and ultrasonic
fields will be reported next to show how the geometry of a levitated drop can be
continuously controlled. The dependence of the resonance frequency of the fundamental (or
quadrupolar) mode of shape oscillation on the static deformation from the perfect spherical
geometry in the absence of an electric field will follow. The effect of a static electric field on
the resonance frequencies of shape oscillations of charged and uncharged drops has also
been measured, and the findings will be described , and finally, the outcome of a study of
the dynamic response of levitated drops to both ultrasonic and electric fields drive will be
presented to show nonlinear characteristics such as subharmonic excitation, soft
nonlinearity in the resonance frequencies, and mode coupling.
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2. EXPERIMENTAL APPROACH
2.1 Levitation Apparatus

The *single-axis ultrasonic levitator has been previously used for the investigation
of the physics of free droplets on Earth as well as in low gravity 431-3°. Similarly,
previous use of the electrostatic levitator has allowed the experimental investigation of the
statics and dynamics of levitated charged drops 36-38 having diameters in the sub-millimeter
to millimeter range. In this particular contribution, we combine the two methods to
investigate the effects of electric field stresses on the surface of ultrasonically levitated
drops carrying an electric charge of variable magnitude in the full range of drop stability
between the Taylor (high field intensity, no surface charge) and Rayleigh limits (maximum
surface charge in constant field). The current approach allows the levitation of uncharged
drops while a previous electrostatic-acoustic hybrid levitation scheme was limited to the
study of acoustically rotated and oscillated charged drops 38.

Figure 1 shows a schematic representation of the experimental apparatus. A drop
is depicted as being levitated between the reflector and the radiating plate of the ultrasonic
driver. The outer surface of the latter is grounded, while the reflector is connected to a high
voltage, low current source effective from DC to about 1 kHz.- A function generator and
RF amplifier provide the driving signal for the ultrasonic levitator, while the high voltage
amplifier and a second function generator control the electric field magnitude and
frequency. These two systems can each control drop levitation and shape modulation
independently or they can be used in a complementary mode. In the experiments described
in this paper the sample was primarily ultrasonically levitated, and the electric field was
used either to modulate or to control the static drop shape.

The voltage between the reflector and radiating plate, V., is acombination of aDC
and of a low frequency sinusoidal signal:

Vi = Vog + v, cos{w,1), (1)

where Vo isa DC voltage used for the electrostatic levitation of acharged drop, and ve and
we are the amplitude and frequency of the AC component drive. of the electric field
respectively. This time-varying component induces both a static distortion as well as
oscillatory shape changes when 2w, (®, for the case of sub-harmonic excitation) is close




to the value of one of the resonant shape mode frequencies (Feng and Beard, 1991 a)28. The
electric field oriented parallel to the gravity vector, and the levitated drop is elongated along
the direction of the electric field. In general, the electric force can be expressed by
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where the first term is usual Coulomb force on a free charge pe, the second term represents
the force on an inhomogeneous dielectric in a field of magnitude E, and the last term
describes the force on a dielectric in a non-uniform field. The electric force components
involved in altering the drop shape both depend on the square of the electric field
magnitude. For a field described by expression (1) they vary at both the frequencies .
and 2w, . When V=0, the drop shape is thus modulated by the time-varying electric
field at the frequency 2w, .

For an axisymmetric and inviscid spherical charged drop, Rayleigh's result3® for
the normal modes is
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where R isthe drop radius, p its density, o its surface tension, and g, the permittivity of the
surrounding medium (air in this case). The resonance frequencies are independent of the
second index k which reflects non-spherically symmetric contributions not accounted for
by Rayleigh's theory. As the experimental evidence presented below will show, this
degeneracy isremoved in actual levitated drops due to the non-spherical initial drop shape.
For a more complete three-dimensional treatment, the drop shape is usually described in
terms of the spherical harmonics (Landau and Lifshitz, 1959)°0 given by
Y 1£(0,0)=P k(cos )eik® . For each I there exists one axisymmetric oscillation mode and 1
distinct three-dimensional modes. Thus, for the fundamental /=2 mode, there are three
distinct modes which are degenerate for the case of a spherical drop. This degeneracy is
removed when the static equilibrium drop shape becomes non- spherical, and, in principle,
three distinct resonance frequencies and oscillatory motion types can be measured. The
axisymmetric mode (also called the “pulsation” mode) is described by the zonal harmonics
(k=0); the other three-dimensional modes, sometimes called the “transverse-shear” (k=1)




and "toroidal” (k=2) modes, are described by the tesseral and sectorial harmonics
respectively.

In addition to the direct excitation from the time-varying electric field, drop shape
oscillations can also be driven by the modulation of the acoustic radiation force. In this
case, the voltage accross the ultrasonic transducer, V. , is given by

Ve = Vaco[1+ M cos(a)mt)]cos(a)act), (4)

vaco IS the amplitude of the carrier voltage at the frequency w,. = 27 f,¢ for the acoustic
standing wave (fac =24.6 kHz), M is the modulation index for the amplitude modulation of
the acoustic force at the frequency . Because the acoustic radiation force is proportional
to the square of the acoustic pressure, this force is therefore proportional to V2,. , and this
amplitude modulation results in a time-varying acoustic force at both the frequencies wy, as
well as 2m,,. This translates into a periodic flattening of the drop by the acoustic force, an
action opposite to the periodic elongation of a liquid sample submitted to a time-varying
electric field.

2.2 The monitoring and imaging of drop oscillations

The dynamic response of the levitated drop to either steady-state or transient
excitation is recorded in two ways: the shadow of a laser-illuminated drop is monitored by
a photodetector located behind a vertical dlit, and the image of the backlit drop is recorded
by a video camera at 30 frames/see or at high rates (2,000 or 4,000 frames/see). The
temporal information is redundant, but the video image recording method allows complete
shape analysis for axisymmetric oscillations, ‘he photodetector output can be absolutely
calibrated with respect to the real drop shape by comparing with the simultaneousy strobed
illumination of the drop under steady-state oscillation drive. The strobing frequency is
slaved to the oscillation drive frequency, but the strobe input signal phase can be vaned
with respect to the low frequency oscillation drive signal. This phase is varied until an
image for the maximum oscillation amplitude is obtained; this can be used for the absolute
calibration by comparing the photodetector signal amplitude and the measured deformation
on the drop image. The sequence of shapes characteristic of large amplitude oscillationsin
the fundamental /=2, k=0 mode shown in figure 2 has been obtained by video recording
the drop shape under strobed illumination.




For the case of axisymmetric oscillations of a free drop, the usual expansion into the
Legendre polynomialsis used. The shape of the drop, described by R(8,t) is
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where Ry is the radius of the sphere of the same volume equivalent to an undeformed drop,
P(cos 0) isthe Legendre polynomial of degree 1, and ¢,(z) are the coefficients describing
the deformed drop shape in terms of the standard 1.egendre shapes. Implementing a
method similar to that used by Becker et al. (199 1)!5, we digitize the contour of the
deformed shapes from the high-speed video images recorded during drop oscillations, and
fit the Legendre polynomials to the experimental edge coordinates. Using this method we
can obtain the time series for each ¢;(t) for driven and freely decaying shape oscillations.
For the data described in this paper, we have limited ourselves to /*=6. A video frame
digitally analyzed is not greater than 320x 240 pixels and up to 256 levels of gray.

At large amplitude oscillations and for non-spherical drops, non-axisymmetric
normal modes couple to the desired axisymmetric oscillations, and this approach is no
longer satisfactory for the analysis of the shape. The onset of non- axisymmemc motion is
immediately reflected in a non-constant value for the “volume” that is calculated from the
digitized image under the assumption of axial symmetry.

3. EXPERIMENTAL RESULTS
3.1 Static Shape of Ultrasonically Levitated Drops in an Electric Field

The static shape of ultrasonically levitated droplets in air and in the Earth
gravitational field has been theoretically 4142 and experimentally studied in the past 43.34.44.
The electrohydrodynamic deformation of drops in weakly conducting liquids has also been
recently determined to essentialy follow Taylor's leaky dielectric theory 4546 . The shape of
drops in a static uniform electric field for both conducting and insulating liquids has been
investigated by O'Konski et al. (1953) 4748 and Sample et al.(1970)49. In this study,
however, we experimentally investigate the superposition of ultrasonic and electric stresses
and their effects on the shape of levitated charged and uncharged dropsin air. In terms of
the equilibrium shape of a levitated drop, the oblate deformation caused by the ultrasonic



radiation stresses can be “ balanced” out by a prolate-biased drop shaping due to an electric
field. If both the ultrasonic and electric fields are axisymmetric, a resulting near-spherical
shape can be experimentally obtained with the appropriate combination of acoustic pressure
and electrode voltage.

A related problem has been investigated by Pruppacher et al.5% (1982), and deals
with the shape of aerodynamically supported droplets in a vertical wind tunnel and in the
presence of a vertically directed electric field. The size of the droplets they investigated
ranged between 0.05 and 0.3 cm equivalent spherical diameter (the diameter of the
equivalent spherical drop of the same volume as the distorted suspended drop). In this
case, the drop shape under terminal velocity conditions is determined by the combination
of hydrodynamic and electric forces. In the absence of an electric field, the equilibrium
shape of these drops is oblate, but inherently asymmetric: their cross section is flattened on
the upstream side (lower hemisphere) and curved on the downstream side (upper
hemisphere) due to the asymmetrical hydrodynamic stress distribution. For relatively
larger droplet sizes (equivalent spherical diameter greater than 0.4 cm), the equilibrium
shape of ultrasonically levitated dropsis almost the opposite: The upper surfaceis flattened
and the lower hemisphere is more highly curved. In roughly the same drop size range
(0.05 to 0.3 cm equivalent spherical diameter), however, ultrasonically levitated droplets
are nearly symmetrical with respect to the equator. On the other hand, the effect of the
vertical electric field on the equilibrium drop shape, is qualitatively similar for both
aerodynamically and ultrasonically levitated drops. electrical forces act opposite to
hydrodynamic and ultrasonic forces, and they can be used to obtain a more spherical drop
shape. More recent analytical results have been produced by Coquillat and Chauzy’1
(1993) for the combined effect of aerodynamic and electrical forces, and they have been
favorably correlated with wind tunnel experimental results.

Figure 3 shows the results of measurements of the equilibrium geometrical aspect
ratio alb = R(6=r/2) / R(6=0) of a 1.85 mm diameter ultrasonically levitated uncharged
oblate water-glycerol solution drop as a function of the magnitude of the static electric field.
The upper limit of the electric field intensity was determined by breakdown in the air gap
separating the ultrasonic driver and the reflector. The three data sets correspond to three
different acoustic pressure levels, and the drop never attains a spherical equilibrium shape
even for the highest allowable electric field intensity. Spherical and prolate static drop
shapes can be obtained for larger volumes as shown by figure 4 which reproduces a series
of photographs of a 0.32 cm diameter water-glycerol drop for constant acoustic pressure




level but increasing electric field intensity. The gradual change from the oblate shape (a-c),
to spherical (d), to symmetric prolate (e,f), and finaly to asymmetric prolate (g, h) can be
clearly observed in this series of photographs. In this case, the drop center of mass remains
at a constant position because the drop does not carry any significant net surface charge.
The loss of symmetry with respect to the drop equator has been theoretically predicted by
Feng and Leal 30 (1995) for uncharged drops and high electric field intensity. These
measurements have been obtained with droplets displaying randomly oriented residua
rotation with angular velocity on the order of 1 rps. Such arotation velocity would induce
shape distortions of less than 0.5% for the material parameter range under consideration.

3.2 Shape oscillations Driven by Modulated Ultrasonic Radiation Force
32.1 Fundamental Resonance Frequency Variation with Static Drop Shape

The measurement of the fundamental mode resonant frequency of drops levitated
in an immiscible liquid host to a modulation in the acoustic radiation force has been used in
the past to yield results consistent with the linear theory 52.53, The results of the same
Earth-based measurements using drops levitated in a gaseous host medium have been
difficult to interpret because of effects of the static distortion from the spherical shape, and
of drop rotation. Not only has a shift in the resonance frequency from the value predicted
by linear theory been documented 54.55, but a split of the resonance frequency of driven
oscillations into three characteristic values has aso been found 4 This shift and splitting of
the fundamental resonance frequency has also been measured for rotating drops levitated
inan immiscible liquid host 56, and it has been theoretically explained by analyzing the role
of the Coriolis force 57. It appears from the available evidence that a rigorous measurement
of the resonance frequency in the small-amplitude range of shape oscillations must account
for the static shape, the field-induced restoring forces, as well as the rotational state of the
drop. We report here the results of the measurement of the fundamental resonance mode
frequency of small-amplitude driven shape oscillations for non-rotating drops as a function
of the oblate deformation.

The control of unwanted drop rotation in a single-axis ultrasonic levitator can be
achieved by using a variety of empirical methods which vary according to the specific
levitator configuration. There is no agreed-upon theoretical account for the generation of
this torque, but existing evidence points to the contributing role of acoustically-induced
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streaming 58. In the particular case reported here, a low gravity environment appeared to
eliminate the unwanted drop rotation by alowing a substantial reduction of the acoustic
intensity required for drop levitation. The measurements were carried out in a NASA KC-
135 airplane flying parabolic trajectories and providing 15 to 20 second periods of effective
reduced gravity (down to about 0.05 to 0.01 g, g being the Earth gravitational acceleration
at sealevel) 59. Many measurements have been carried out over a period of 8 years, but the
results presented here consist of five sets of data for five different drops obtained during
four different series of arplane flight experiments. The selection of these five sets was
based on the following criteria: The oscillations were axisymmetric (i.e. 1=2, k=0 in
equation (3)), the rate of drop rotation was less than 0.1 rps, the amplitude of translational
instability was less than 10% of the drop effective equilibrium diameter, and the reference
frequency for a “spherical” drop shape (0.99 <a/b<1. 1) was obtained for each
measurement of the frequency at a different a/b parameter (where a/b isthe ratio Of the
horizontal to vertical dimensions).

The measurement of the resonance frequency was carried out in the following
manner. A drop was levitated during level flight (effective gravity level of about 1 g) and
the ultrasonic transducer power was adjusted to allow the levitation of the drop in the
climbing and recovery phases of the parabolic trajectory (up to 1.8 g). At this stage, the
drop is drastically flattened because of the high sound intensity. During the low gravity
period, the transducer power was reduced to a minimum level necessary to position the
drop and to adjust its shape to near-spherical . The driven resonance frequency was then
measured by maximizing the amplitude of the oscillatory response of the drop to a varying
modulation of the acoustic force. The amplitude of the shape oscillations was always kept
at values below 10% of the vertical drop dimension (less than 10% of the effective drop
radius). The drop response was visually monitored and the mode shape (I=2, k=0) was
identified using the magnified drop image from a video camera equipped with a
microscope lens. The modulation frequency at maximum response was measured to
within 0.1 Hz for the low viscosity (1 to 3 cP) liquids and drop sizes used (0.3 to 0.4 cm
diameter). The aspect ratio of the oblate shaped drops was measured by digitizing the video
recorded images which were absolutely calibrated by imaging a ball hewing of roughly the
same size as the drops. A reference measurement of the resonance frequency for a near-
spherical drop was always taken in the high-to-low gravity cycle right after the one during
which a measurement at higher deformation had been recorded. The relative shift in the
resonance frequency for a specific aspect ratio (or deformed drop shape) is the ratio of the
values of these two consecutive measurements. The reference value f, is thus an
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experimental value, not one calculated from the surface tension, density, and drop size, and
each data point consists, therefore, of two consecutive measurements of the resonance
frequency. The short elapsed time between the two measurements minimizes the
uncertainty associated with a change in drop size due to evaporation.

The results are plotted in figure 5 where the relative shift in the resonance
frequency f2/f20 is shown as a function of the deformation (alb). A very slow decrease in
the resonance frequency is obtained for initially low oblate deformation, and, within the
experimental uncertainty, higher values of a/b(larger deviation from the spherical
geometry) always leads to a lowering of the measured resonance frequency. These results
are in qualitative agreement with those obtained with laboratory-based levitators, but a close
guantitative match was not obtained, except at very large values of a/b. The shift in the
resonance frequency measured in 1 g was based on a calculated reference value obtained
from equation (2) for uncharged drops (Q=0). This is because undistorted levitated drops
can only be obtained in 1 g for very small sample radius (R<0.05 cm). Such small size
droplets are heavily damped, and a driven resonance frequency is difficult to measure
precisely. The current results are also in general agreement with previously obtained 1 g
and microgravity data from other investigators 55.

3 2.2 Fundamental Resonance Freguency Variation with Satic Electric Field

The shift in the fundamental resonance frequency of ultrasonically driven shape
oscillations of levitated drops with an oblate equilibrium shape has been measured as a
function of the magnitude of a static (DC) electric field. Both charged and uncharged drops
have been investigated. These measurements have been obtained in an Earth-based
laboratory, and they are more difficult to interpret because of the influence of both the
ultrasonic and electric fields on the drop dynamics. In order to minimize the coupling
between these two force fields, we have carried out measurements for very low amplitude
acoustically-driven shape oscillation with a constant ult: asonic levitation force as a function
of the magnitude of the DC electric field, and for increasing surface charge values below
the Rayleigh limit. Measurements of the absolute value of the surface charge were not
carried out since we were mainly interested in the relative shift in the resonance frequencies
of normal modes as a function of both electric field and charge.

12




The following procedure was adopted for the quantitative. determination of the
variation of the driven resonance frequencies: (1) A drop was deployed and levitated
ultrasonically, (2) The drop size and shape were measured using its digitized video image,
(3) The driven resonance frequency for the axisymmetric fundamental mode (/=2, £=0)
and zero electric field was first measured by maximizing the signal from the photodetector,

, (4) The same measurement was then repeated for at most five increasingly higher static E
field values, (5) A final measurement was made for E=0O. Each resonance frequency
measurement took about 10 seconds, and the whole set of six to seven data points could
easily be carried out in less than 90 seconds. The drop size and shape were again measured
after each series of measurement to ensure that the drop volume change due to evaporation
was small (< 0.5 %) and that the ultrasonic force stayed constant (drop aspect ratio a/b
change less than 0.5%). Only the data sets satisfying these conditions were recorded. The
relative frequency was plotted as a function of a normalized electric field (E=E” (goR /
0)1/2)). The liquid surface tension ¢ was measured by a pendant drop technique, and the
viscosity was determined by a Cannon-Fenske type apparatus. The drop size ranged
between 0.2 and 0.3 cm diameter, and the liquids used were distilled water and a low-
viscosity agueous solution of glycerol (3.25 CP dynamic viscosity).

Figure 6 reproduces a representative data set for uncharged drops and for drops
carrying two different charges. The charges Q1 and Q2 have been induced on the drops by
imposing voltages of -2 and -3 kV respectively to the electrode connected to the drop
injection needle prior to sample deployment and levitation. The. maximum estimated
experimental uncertainty in the resonance frequency measurement is 0.5 % (or 0.3 to 0.4
Hz absolute uncertainty). Typical frequencies ranged between 60 and 80 Hz. The
continuous curves shown on the graph are third order polynomial least-square fits through
two sets of data. The results show a drastic decrease in the driven fundamental resonance
frequency for an increasing static electric field intensity. This decrease is even more
accentuated by the presence of free surface charge on the drop. “I’his is in qualitative
agreement with available analytical and numerical predictions 2839,

A strict comparison with existing theories is not possible, however, because the
shape of the levitated drop does not remain constant as the magnitude of electric field is
increased. The initially oblate, ultrasonically levitated drop is deformed by the increasing
static field which tends to restore it to a more spherical or even prolate shape. The change in
resonance frequent y measured in this particular experir nent thus includes the effects of the

13




electric field together with the influence of the equilibrium drop shape on the resonant
oscillations.

3.3 Nonlinear Characteristics of Driven Large Amplitude Drop Shape oscillations

Three-dimensional driven shape oscillation resonant modes have been excited by
using levitated millimeter-size low viscosity droplets and modulated ultrasonic radiation
pressure or an AC electric field. The equilibrium shape of these ultrasonically levitated
drops is oblate with aspect ratio a/b having values between 1.2 and 1.3. The characteristics
of the frequency response to these driven excitations are highly sensitive to the drop
viscosity: a change from 1.0 to 3.25 CP in the dynamic viscosity brings about a qualitative
change in the spectrum of the measured three-din tensional resonant modes for the
fundamental /=2 shape oscillations. As we shall describe in the following sections, three
separate resonances can be experimentally determined for pure distilled water, and large
amplitude driven oscillations lead to a complicated coupling between these three modes.
For a higher viscosity liquid (water-glycerol solution with 3.25 CP dynamic viscosity), only
two resonances can be observed, and large amplitude driven oscillations can lead to
hysteresis and random coupling. The multiplicity of the modes disappears for liquids with
viscosity higher than 10 cP , and a single broad peak is obtained.

Fairly large amplitude shape oscillations for the first few shape oscillation modes
(I=2,3,4) have been observed when either of the modulation frequency ®g, (See equation
4), or twice the electric field frequency 2w, (See equation 1) coincides with the appropriate
resonance frequency. Figure 7 shows photographs of instantaneous drop profiles of
resonant mode oscillations obtained by using strobed back illumination. The higher mode
number resonant oscillations have been experimentaly recorded by levitating 4 mm
diameter droplets and using substantial modulation of the acoustic radiation force.
Although there exists a multiplicity of distinct three-dimensional oscillatory motions for
each mode number 1, and corresponding to k # O, they cannot be all experimentally driven
with the same ease. In general, for each of the fiist three primary resonances (/=2,3,4), only
a subset of all the three-dimensional modes can be excited at moderate oscillation
amplitude.

Because the multiplicity of three-dimensional, non-axisymmetric modes quickly
increases with higher primary mode number 1, experimental studies of internal mode
coupling rapidly become quite complicated. In order to reduce the level of complication, we
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have first concentrated on the fundamental resonant mode (/=2) in our discussions of the
internal coupling involving three-dimensional modes, of the sub-harmonic mode
excitation, and of the hysteresis effect. Energy exchange between resonant oscillations
with different primary mode numbers will be discussed in the last section dealing with
driven and freely-decaying shape oscillations. All the results described below were
obtained with effective drop diameter between 3 and 4 mm, and all the experimental results
to be described from this point on have involved electrically uncharged drops. All levitated
droplets were undergoing randomly oriented residual rotation with a maximum rotational
velocity of 1 rps. Through a still unknown mechanism, this residua rotation was
substantially reduced, however, as soon as the drops were driven into axisymmetric shape
oscillations.

3.3.1. Non-Axisymmetric Three-Dimensional Resonant Mode Coupling

Three resonances are experimentally observed for distilled water and low shape
oscillation amplitude: at the lowest frequency (f2,) is a resonance corresponding to
vibration with maximum displacement at the poles and very small motion at the equator
(oscillations in a vertical plane), the middle resonance (fb,) is associated with maximum
displacement at the equator and limited motion at the poles (oscillations in a horizontal
plane), and finally the highest frequency (f¢,) resonance corresponds to the usua oblate-
prolate mode with the amplitude at the poles being twice at large as at the equator. Figure
8 is a schematic representation of the motion associated with each of these three resonant
oscillatory responses. The ratios of the frequencies have the consistently reproducible
values of fc,/fb = 1.22 and f°,/ f°,= 1.4. For low oscillation amplitudes (maximum
surface displacement less than 10% of the equilibrium drop diameter), the same results are
obtained for both methods of shape oscillation excitation (acoustic force modulation and
time-varying electric field).

As the oscillation amplitude is increased by stepping up the acoustical or electrical
force excitation, the first resonant oscillations lose axial symmetry and the initially vertical
plane vibrations are mixed with running waves resulting in ordered three-dimensional
motions. These three-dimensional oscillations can be driven in a wide frequency range
centered on the initial lowest resonance, and as the frequency is further increased, they are
abruptly replaced by the oscillations in a horizontal plane. Increasing the frequency even
further excites a mixture of three dimensional modes which can be identified as the pure

15



(1=2, k=1), (I=2, k=2), (I=2, k=0), modes and a combination of the pure modes. These
modes appear to be excited at random, intermittently, and in succession even when the
drive frequency and amplitude are kept constant. A second isolated broad resonance can be
identified at higher frequency, and corresponds to a large amplitude oblate-prolate
oscillation coupled to a running wave.

Figure 9 illustrates the observed drop oscillation geometries for k=0, 1,2 and for the
“running wave” mode observed at the higher frequency. The /=2, k==0 mode motion is the
usua axisymmetric oblate-prolate oscillation with vertical displacement nearly twice that of
the horizontal amplitude (figure 9a). The 1=2, k= 1 mode is a periodic wobble about the
vertical axis (Figure 9b), while the /=2, k=2 is an oblate-prolate oscillation about an axisin
the plane normal to the vertical axis of symmetry with no displacement along the vertical
direction °(figure 9c). As shown in the photographs in figure 9, the experimentally
observed oscillations are not pure modes, and coupling persists even though the major pure
mode characteristics can be easily identified. For example, the I=2, k=2 oscillations
observed in figure 9c till display motion aong the vertical axis, indicating residual
coupling with the 1=2, k=0 mode. In general, coupling of the k=0 oscillations with the k=l
mode occurs at dlightly lower frequency than with the k=2 mode, suggesting that the
splitting of the degeneracy by the static shape deformation causes the latter resonance to be
at higher frequency, In the presence of a static electric field, the k=0 and k=I driven
resonances appear at lower frequency, while the k=2 mode increases in frequency, in
agreement with theoretical predictions (Feng and Beard, 1991 b). The last, “running wave”
type of oscillation (figure 9d) cannot be readily classified, but one might speculate that it is
acombination mode of al three types of oscillations having a well defined and significantly
higher resonance frequency.

For a higher viscosity liquid (3.25 cP) only two resonances can be identified. At
first approach, the first resonance peak is easily associated with the axisymmetric k=0
mode, and the second one (found at higher frequency) is a three-dimensional mode which
appears to be a combination of axisymmetric oblate-prolate oscillations and of a surface
running wave. Upon closer inspection of the first resonance, however, and upon increasing
the shape oscillation amplitude, the three dimensional modes (with k=l and k=2) can be
individually driven at frequencies very close to that of the axisymmetric mode. A definitive
assignment of aresonance frequency to each of the pure. mode cannot be reliably obtained,
however, due to the substantial overlap of the three modes within a small frequency range.
At large enough oscillation amplitude, periodic energy exchange between the axisymmetric
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and non-axisymmetric modes takes place in the same manner as described in the case of
the lower viscosity liquid. For very large oscillation amplitude a sudden transition can be
induced from seemingly stochastic three-dimensional shape oscillations to axisymmetric,
large amplitude, oblate-prolate oscillations as the frequency is swept downward below the
first resonance peak frequency. This hysteresis effect is only observed when the electric
field drive is used, and it will be further discussed in the next section. For a drive
frequency within the second resonance, however, the stochastic three-dimensional
oscillations never transition to an axisymmetic motion, and the drop is eventually split by
the combination of shape oscillations and rotation induced by the running-wave instability.
Further, coupling between the large amplitude shape oscillation mode and the resonant
translational mode (/= 1) where the restoring force is supplied by the ultrasonic levitation,
can lead to sample instability due to vertical oscillations and eventually to a loss of
levitation. This coupling can arise due to subharmonic interaction when the shape
oscillation frequencies are approximately twice the trandational mode resonance freguency.

For liquid with viscosity equal to or greater than approximately 10 cP, only asingle
broad resonance corresponding to the (I=2,k=0) oscillations can be found. This
axisymmetric mode can be maintained to very large oscillation amplitude without coupling
to the three-dimensional modes, but it degenerates into a combination of oscillation and
running wave when the drive frequency is increased above the broad resonance peak
frequency. Viscosity effectively inhibits the energy exchange between the various three-
dimensions.1 oscillations characteristic of the fundamental resonant mode and thus enhances
the large-amplitude axisymmetric mode stability.

3.2.2 Hysteresis of the Fundamental Mode Response to a Time-Varying Electric Field

The outcome of a sweep of the time-varying electric field frequency across the first
resonance of a levitated drop of water-glycerol solution (3,25 ¢P viscosity) depends on the
sweep direction when the oscillation amplitude becomes large. When the frequency is
increased, the axisymmetric mode is first excited with growing amplitude. As the
frequency is further increased and the drop displacement amplitude reaches significant
values, the non-axisymmetric resonances are excited, and the. oscillations become three-
dimensional with the stochastic and intermittent appearance of pure as well as combination
modes. This is described in figure 10 where the output of the photodetector monitoring
the drop shape is plotted as a function of the electric field frequency. At fixed E-field
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amplitude, the E-field frequency was caused to sweep from 55 to 85 Hz, then back from
85 to 55 Hz at 0.25 Hz/sec. The I=2 mode was thus sub-harmonically excited. At these
large amplitudes, the resonance curve has leaned so far to the left that it has become triple-
valued, with an unstable branch. Such a saddle-node bifurcation has long been recognized
as a characteristic feature of nonlinear driven oscillators (Morse and Ingard (1986)”; Parlitz
et al. (1992)%1). Thisis the first observation of such a phenomenon in a free oscillating
drop. What is unique and unexplained, however, is the observation that the crossing of the
saddle-node boundary on the downsweep is either preceded or is simultaneous with a
shape instability. As the bifurcation frequency is approached from above, and at the
maximum prolate phase of the oscillation, a wobbling motion of the drop with respect to
the axis of symmetry is observed. After no more than a few cycles of the 1=2 oscillation,
the amplitude drop precipitously to the origina non-resonant value.

This hysteresis cannot be observed with water because coupling to three-
dimensional modes prohibits any significant increase in the axisymmetric mode amplitude.
Further, hysteresis cannot be observed when the acoustic force modulation is used to
induce shape oscillations in the absence of an electric field. When a steady (DC) electric
field is present, however, acoustic force modulation will alow the observation of
hysteresis. The electric field thus appears to exert a stabilizing action on the large amplitude
shape oscillations.

3.3.3. Soft Nonlinearity in the Resonant Oscillations

In view of the evidence described in the preceding paragraph, it should not be
surprising to find that the resonance frequency of driven fundamental mode shape
oscillations decreases as the amplitude increases. This has been theoretically predicted
8.9.11,16 gnd experimentally verified for immiscible liquid systems!4 and falling liquid
drops in a gas!S. Recent results from a Space Shuttle-based experiment carried out in
microgravity also support the existence of a soft nonlinearity with quadratic dependence on
the oscillation amplitude for freely decaying drop shape oscillations$2. We report here
corroborating data for both driven and freely decaying shape oscillations of droplets
levitated in air and at 1 G. The shape oscillations have been driven by the time-varying
electric field. Although these results are for non-spherical uncharged drops, they are of
more practical use to ground-based dynamic methods for surface tension and viscosity
measurements using the levitation approach.
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Driven oscillation data are more difficult to analyze because of the steady-state drop
deformation which is generated together with the time-varying oscillatory motion (Feng
and Beard, 1991 a)*. Since steady-state drop distortion has also been shown to alter the
resonant mode frequencies, observed shifts in these frequencies are the results of the
combined effects due to nonlinearity and static shape distortion. In these particular
experiments, the ultrasonically levitated droplet already has an oblate equilibrium shape,
and the steady-state shape-distorting contribution of the time-varying electric field will tend
to drive it into a more spherical shape. The net, experimentally observed effect has been a
consistent lowering of the resonance frequency of the axisymmetric fundamental mode
(I=2, k=0) of shape oscillations for increasing displacement amplitude. Figure 11 describes
experimental results obtained for a water-glycerol mixture where the drop oscillatory
response recorded by the optical detector has been plotted as a function of the electric field
frequency for different field strengths. The frequency shift can be measured through the
determination of the change in peak frequency (figure 114), or by the change in frequency
for 90 degrees phase shift at resonance (figure 11 b). Both methods yield similar results
(within 2%). The composite plot in figure 1 1c¢ graphically demonstrates the soft
nonlinearity for driven oscillations. The second peak found at the highest electric field drive
reflects the excitation of the “running wave” mode previously described.

Quantitatively similar results are obtained when the acoustic force modulation drive
is used to excite the shape oscillations. In this case, because the static distortion associated
with the oscillatory drop response results in a more oblate shape, one can conclude that the
contribution from the static deformation is minor compared to the purely nonlinear aspects
of the oscillations.

The results depicted in figure 1 1¢ have been gathered over a9 minutes time period.
Appreciable drop evaporation takes place over such a time frame, and a correction via
normalization has been folded into the analysis of the results. In view of al these
experimental complications, we have preferred to rely on the free-decay dynamics for
frequency shift measurements. In this approach, drop shape oscillations are first driven at
an experimentally determined resonance frequency, and the frequency of the free-decay
phase after the excitation drive has been terminated. A functiona fit to the damped
oscillations alows the empirical measurement for the frequency and damping time-
constant. The frequency obtained by afit at the high amplitude portion of the decay trace
can be compared to the equivalent measure obtained at the late portion of the decay phase

19



where low amplitude oscillations take place. Under these conditions, both the effects of
static deformation and evaporation can be virtually eliminated, and a large data sample can
be acquired over a very short time.

Direct measurements of the time-dependent drop shape have been gathered through
the analysis of digitized video images obtained at high frame rate (2,000 frames per
second). The backlit drop contours were analyzed using the standard spherical harmonics
expansion, and the c¢; (t) coefficients (see equation 5) were determined for /=2 to /=6 for
axisymmetric oscillations. Figure 12 is a sample of the resulting plot for the ¢2(2)
coefficient obtained from the decay of a 3 mm diameter drop initialy driven at resonance.
A functiond fit involving an exponentially decaying sinusoidal time dependence optimized
for the large amplitude portion is shown on the graph, emphasizing the increase in the
characteristic decay frequency at low amplitude. A measurement of the oscillation
amplitude from the digitized images, and a functional fit at the lower amplitude end provide
the necessary information to determine the frequency shift as a function of oscillation
amplitude. Such an experimental ly determined dependence is displayed in figure 13 where
the percent relative frequency shift ®2(t=1)-w2(t=0)/ w, (t=1) (Where 1 is the
experimental elapsed time after which the fit to the low amplitude oscillation isinitiated) is
plotted as a function of the oscillation amplitude normalized to the equatorial radius of the
quiescent levitated oblate drop. Qualitative agreement with previous experimental results in
liquid-liquid immiscible systems!4 can be observed, but a quantitative corroboration of the
available theoretical predictions cannot be obtained. This is not surprising due to the
constraints imposed by both the ultrasonic and electric fields.

3.3.4. Sub-Harmonic Driven Resonances

Driven shape oscillation resonances are usually observed when the frequency of the
time-varying stimulus coincides with the appropriate resonance frequencies. When the
magnitude of the time-varying driving force is high enough, however, a secondary sub-
harmonic resonance can also be obtained where the driving frequency is twice the
resonance frequency. In this particular work, we have observed sub-harmonic response
when the ultrasonic modulation frequency w,, = 2 ®* , or when the time-varying electric
field frequency w. = w*, where w* is the frequency of the observed resonance. We report
here results for the sub-harmonic excitation of the /=2 and /=3 modes.
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When the electric field frequency w, has a value nearly equal to the fundamental
guadruple mode @ , the actual electrically-driven time-varying distortion has a frequency
equal to 2w, which is close to that of the /=3 resonance mode, ®3 . Under ideal
circumstances and when the amplitude of the drive is sufficiently high, both these modes
should be excited : the /=2 mode through a secondary and the /=3 mode through a primary
resonance. In actual experimental situations, however, the ability to drive asymmetrical
modes such as /=3 oscillations depends on both geometrical factors as well as on their
damping characteristics. For highly symmetrical levitator configurations, it is not possible
to directly excite large amplitude 1=3 oscillations because the subharmonic 1=2 secondary
resonance takes precedence. It is possible, however, to induce the three-lobed /=3
oscillations through the secondary resonance path by setting we = 3 .

Figure 14 describes results of experiments on driven and free-decay of sub-
harmonically driven fundamental quadruple oscillations using a 3 mm diameter droplet of
water-glycerol mixture. The various Legendre coefficients ¢; (r) obtained from the digitized
video drop images, are plotted on the same scale as functions of time (figure 14a). The
calculated volume has also been plotted, and the recorded fluctuations of less than 1 %
confirm that the oscillations are essentially axisymmetric. In this particular example we =
@2 = 439.6 rad/sec (or 70 Hz). Figure 14b displays the FFT of these time-series traces,
and shows the drive frequent y peak at 140 Hz and the generated sub-harmonic drop
response at 70 Hz. In this case, not only is the /=3 mode directly excited at @3 , but much
higher amplitude 1=2 oscillations also appear at &y . The higher order coefficients ¢4 (t), ¢s
(1), and ¢ (1), also show non-zero values, but they oscillate mainly at the fundamental
frequency ®2. This is in agreement with the theoretical result from Feng and Beard
(1990)*, predicting that the description of the oscillatory response at each fregquency
involves several Legendre polynomials.

The sudden decrease of the zero amplitude line in the ¢2 (z) plot is a manifestation of
the steady shape deformation associated with the electrically-driven oscillations. Because a
high electric field amplitude is required to drive a sub-harmonic response the drop is
statically deformed into a more prolate shape; this is reflected by an increase in the ¢2 (1)
value of the zero amplitude line during the driven oscillations phase. As the AC electric
field is shut-off, thus eliminating this static shape deformation, the free-decay phase is
initiated and the zero-amplitude line shifts to a more negative C,value corresponding to a
more oblate equilibrium shape.
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3.4 Resonant Modes Coupling

We present here experimental results obtained from the analysis of digitized high-
speed video images of oscillating drops in both the steady-state driven as well as free-decay
modes. In a typical experimental sequence, the drop is first excited into resonant
oscillations of the appropriate mode number through either direct or sub-harmonic drive.
The shape oscillation drive mechanism is then abruptly terminated, and the free-decay
phase is recorded with a high-speed video camera at 2,000 frames per second (4,000 fps
for higher mode number oscillations such as I=4). Two options are available when shutting
off the oscillation drive: the time-varying electric field can be set to zero, or its frequency
can be abruptly increased to a high frequency outside of the drop response frequency range
(i.e. 500 Hz). The first approach allows the observation of both oscillatory motion as well
as of the steady-state deformation induced by the time-varying electric field drive. The
second option permits the measurement of the free-decay of the oscillatory motion alone as
the steady-state deformation is still induced by the higher frequency AC electric field. A
corollary situation exists in the case associated with modulated acoustic radiation pressure.

The principal results are :

(1) The profiles associated with each resonant axisymmetric mode driven at a
sing le frequent y are described by several l.egendre coefficients of different orders,
implying that the dynamic shapes of large amplitude resonant oscillations are characterized
by a combination of multiple Legendre shapes.

(2) In general, even-numbered modes do not easily couple to the odd-numbered
oscillations, while odd-numbered driven modes can excite even-numbered mode shapes.

(3) Very little energy is transfered to higher modes (at their respective resonant
frequencies), and this weak mode coupling is significantly hampered by viscous

dissipation.

(4) Energy transfer to lower modes and to non-axisymmetric motion is much more
prevalent for both driven and free-decaying oscillations.
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(5) The free-decay phase of initially oscillating, electrically driven droplets is greatly
influenced by the precursor oscillation mode shape and frequency: the characteristic
frequency of each Legendre coefficient is dominated by the initial conditions, and the
natural modal free oscillations are superposed on the decay of the initial forced oscillations.

Figures 14a and 14b describe an example of a case when the fundamental
guadruple resonance is initially driven sub-harmonically (the electric force frequency is
twice the drop response frequency, i.e. we = W2 ). A noticeable. 1=3 response can be
measured due to direct excitation at 140 Hz, but a much larger /=4 response is detected at
the /=2 mode frequency of 70 Hz. Much smaller contributions from the /=5 and 1=6
components can also be detected, and their primary frequency components are @3 and @,
respectively. In this particular case, even though the large amplitude oscillations are those
of an even-numbered mode, odd-numbered modes are also excited because of the presence
of the w3 frequency component in the drive mechanism. Very little energy transfer to
higher normal modes at their natural frequencies is detected at this oscillation amplitude
(about 20% of the equivalent spherical diameter). Even in the free-decay phase, the
frequency of oscillation of the higher order coefficients c4 and ¢s is the same as that of the
fundamental mode C,. Only at the end of the free-decay phase can the characteristic
frequency (3m,) of the I=4 mode be detected, as shown in figure 1 S where both the time
variations of the C,and C,coefficients are plotted.

The separation of the odd and even-numbered oscillations is even more apparent
when the quadruple drop oscillations are directly excited by the time-varying electric field
(i.e. e = (1)2/2). This case is illustrated in figure 16a and b where both the time-series
and FFTs for the first five Legendre coefficients are plotted using the. same scale. The large
amplitude 1=2 oscillations generate significant /=4 and /=6 responses at the same frequency
of 60 Hz, but /=3 and /=5 oscillations are barely measur able. A more symmetrical shape of
the decay curve envelope for the fundamental mode reflects a lower voltage required to
drive a primary resonance and consequently a smaller static shape distortion associated
with the time-varying electric force. The very asymmetrical oscillations of the higher order
Legendre coefficients probably reflect the asymmetry of the electric field drive which is
biased towards the elongation of the drop in the vertical direction. The fluctuations in the
calculated volume are caused by deviations from axial symmetry due. to probable coupling
with three-dimensional resonant modes at large amplitude oscillations. As in the previous
case, virtually no evidence of coupling to the higher resonance modes could be obtained,
although the FFTs of the /=4 and /=6 coefficients both reveal an unexplained harmonic
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component at 120 Hz. Also note that the decay constant is the same for all the Legendre
coefficients, strongly suggesting the existence of a single mode.

Fairly large amplitude oscillations of the /=4 resonant modes can be observed when
low viscosity liquids such as water are used. Figure 17 presents the time series of the
Legendre coefficients of a levitated water drop initially driven in the third resonant shape
mode. In this case both higher and lower mode number synchronous oscillations are
detected in the driven phase. Because relatively high electric field intensities are required to
drive the higher, more damped modes, a substantial static shape distortion accompanies the
time-dependent shape oscillations. Definite coupling to the fundamental mode in the free-
decay phase is revealed by the time variations of the C,coefficient where alower frequency
component immediately appears upon termination of the electric field drive. These results
can be compared with Basaran's predictions!é based on the numerical simulation of the
decay process of adrop initialy distorted in a static shape based on a Legendre coefficient
c4=0.3 for a liquid drop with a Reynolds number Re=100 ( Re==1/v (cR /p)12 ). The
experimental findings are for Re=360, the drop is initially oscillating, and the decay trace
envelope is asymmetrical. The essential features, however, are consistent with the
numerical simulation results except that the /=4 frequency component is absent from the
theoretically derived time variations of the /=6 and higher coefficients. Experimental results
also show noticeable 1=3 and /=5 components synchronous with the /=4 driven
oscillations.

A similar experiment was also performed in low gravity during a Space Shuttle
flight by one the authors (EHT). A rotating drop of water was acoustically positioned in
air, and modulation of the acoustic radiation pressure was used to drive it into steady-state
I=4 resonant shape oscillations prior to observing a free-decay phase obtained by turning
off the amplitude modulation of the positioning sound field. The video-recorded sequence
has been analyzed, and the results are presented in figure 18. The space-based data show
negligible contribution from the odd-numbered coefficients, and confirm the coupling to
the lower frequency fundamental mode. The dominance of the fundamental natural mode,
however, isimmediate upon initiation of the free-decay phase. Synchronous oscillations of
the ¢2 and ¢¢ coefficients similar to the ground-based results are also obtained. The
modulation of the fundamental mode oscillations (observed in the ¢2 and volume plots) is
caused by the onset of three-dimensional modes as the constraining amplitude modulation
of the sound field is turned off. Figure 19 presents results for a drop in low gravity
oscillating about an oblate shape and driven by modulated acoustic radiation pressure.
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These results have been obtained from 16 mm cinefilm records which are more dificult to
digitally analyze, but they are very similar to those presented in figure 17 for a droplet
levitated on the ground and driven into oscillations by a time-varying electric field.

4. DISCUSSION AND SUMMARY

The principal objective of this experimental investigation was to carry out specific
guantitative observations of the dynamic response of free drops levitated in the Earth
gravitational field. The motivation was to study the nonlinear aspects of these motions
within the framework of an aready substantial body of anaytica and numerical
predictions, but also to better assess the influence of ultrasonic and electric fields on these
phenomenain order to effectively exploit the capabilities of single fluid particle levitation
techniques for various Earth-based as well as low-gravity applications. In view of the
evidence uncovered thus far, we are comforted by the fact that theoretical predictions have
been shown to be consistent with most of our findings when the experimental conditions
closely approximate the theoretical constraints. On the other hand, we have also
determined that both acoustic radiation pressure and electric field stresses and free charges
significantly modify the dynamic response of free drops. Although a general theoretical
framework for the analysis of the isolated static effects of acoustic and electric fields exists,
a detailed analytical or numerical study of al the relevant factors influencing the behavior of
alevitated drop in 1 g is not yet available.

Measurements of the static deformation of levitated drops under the combined
action of acoustic radiation and electric field stresses have been carried out for the first time
asafirst application of the hybrid levitation technique. The opposite actions of the acoustic
(oblate-biased) and electric (prolate-biased) forces have been shown to alow the
continuous controlled shaping of the drop. No theory combining both field effects is
currently available.

The static oblate deformation associated with ultrasonic levitation of liquid drops
has been determined to induce a decrease in the resonance frequency of driven quadruple
small amplitude shape oscillations. This fact had already been established by prior
experimental studies for substantially deformed levitated drops in 1 g34, but recent low
gravity measurements have confirmed this decrease for dightly deformed droplets. ‘I’ his
has a significant impact on those ground-based methods of surface tension measurement
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relying on the determination of the resonance frequency of oscillating drops. In the
presence of a static electric field, this frequency has also been shown to significantly
decrease, even for spherical drops. The presence of a net surface free charge was aso
shown to accentuate the lowering of the frequency. The experimental results we have
described in this paper, however, concern ultrasonically levitated charged and uncharged
droplets under the influence of a static electric field. Although the outcome of this study is
in qualitative agreement with available theoretical predictions, a detailed analysis of the
results requires the assessment of the effects of both the static oblate deformation as well as
of the ultrasonic restoring force.

The decoupling of the non-axisymmetric quadruple modes from the usual oblate-
prolate axisymmetric oscillations has been experimentally verified for oblate ultrasonically
levitated drops. Three isolated resonances with characteristic oscillatory motions can be
identified for low viscosity liquids, but increasing the viscosity gradually results in the
eventual merging of these peaks into a broader resonance curve. The presence of a static
electric field shifts the resonance frequency of two of the modes downwards (I=2, k=0 and
1=2, k=1), but the last mode (/=2, k=2) frequency israi seal, as predicted by a theory based
on asymptotic expansion?8 , At large oscillation amplitude, coupling, between these closely
spaced modes takes place and this generally leads to seemingly three-dimensional and
temporally complex oscillations. Under the excitation due to a time-varying electric field
hysteresis can be observed for the oblate-prolate mode which is driven to very large
amplitude before a surface instability abruptly and dramatically decreases the high
amplitude driven response. This hysteresis effect cannot be observed when the drop
oscillations are excited by modulated acoustic radiation pressure, although in this case, the
presence of a szatic electric field will bring it back.

Sub-harmonic excitation of shape oscillation triodes has been observed when the
frequency of the time-varying stimulus is twice the relevant resonance frequency. This
secondary resonance phenomenon has also been theoretically predicted?8 , and it allows the
indirect excitation of resonant modes not driven through the standard primary resonance.
For example, asymmetric, odd-numbered resonant modes such as the /=3 oscillations can
only be driven to substantial amplitude through the secondary resonance route.

Even at fairly large amplitude shape oscillations, very little energy is transferred

from lower-order modes to higher-order resonances. When axisymmetric shape
oscillations are decomposed into their linear components represented by the Legendre
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polynomials, driven resonant oscillations at a single frequency are described by severa
time-varying Legendre coefficients. Even in the free-decay region, the time dependence of
the first few Legendre coefficients is dominated by the driven oscillations. When a higher-
order mode is driven and subsequently turned off, coupling to lower order modes can be
observed at their natural frequency, suggesting that viscous dissipation is the primary
influence in the mode coupling process, Microgravity experimental results obtained with
droplets positioned in air by acoustic radiation force are very similar to the ground-based
data, suggesting that high intensity ultrasonic and electric fields modify the observed drop
dynamics quantitatively, but not qualitatively.
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FIGURE CAPTIONS

Figure 1.

Schematic description of the experimental apparatus. A drop is shown freely suspended
between the driver and reflector of a single axis ultrasonic levitator. A high voltage
amplifier driven by alow frequency (DC to 1 kHz) function generator is connected to the
reflector, and generates the DC and AC high voltages. The drop motion is recorded by a
ccd video camera connected to a recorder and to a microprocessor with a real-time 30 fps
frame grabber. For high frame rate application, the ccd camerais replaced by a Kodak Spin
Physics high speed camera and recording system. The drop shape can also be monitored
by projecting the shadow of the levitated back-illuminated drop onto a photo-detector. The
output of this photo-detector is amplified and fed into a digital oscilloscope and spectrum
analyzer.

Figure 2.

Photographs of a sequence of shapes captured using strobed illumination. The drop is
undergoing large amplitude driven quadruple (=2, k=0) shape oscillations. Typical
fundamental mode oscillation frequencies range between 50 and 100 Hz for the sizes and
liquids used in this study.

Figure 3.

Plots of the measured aspect ratio a/b of alevitated water-glycerol drop as a function of the
value of the static electric field and for three different fixed sound pressure levels. The drop
profileisinitialy oblate in the absence of any electric field due to the ultrasonic radiation
stresses. The action of a DC (static) electric field is to reduce the drop aspect ratio, i.e. to
force the drop shape into a more spherical shape. For the acoustic levels used in this
example, even high electric field strength up to breakdown value did not force the drop
back into an ideal spherica geometry (a/b=1.0).

Figure 4.

Photographs of a sequence of static drop shapes for a fixed ultrasonic pressure and
increasing DC electric field strength (from 1 to 10 kV/cm). For a large enough drop,
prolate shapes can be obtained within the allowable electric field strength. A noticeable
asymmetry can be observed at the high end of the electric field values.
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Figureb.

Plot of the results of measurements of the shift in the driven quadruple (I=2, k=0)
resonance freguency as a function of the drop static oblate distortion (expressed by the
aspect ratio ah). These results were obtained during short-duration periods of low gravity,
and they are strictly relative measurements. Each data point corresponds to two consecutive
measurements. one at a/b near 1.0 and another one at a relevant higher value of the aspect
ratio.

Figure6.

Plot of the results of measurements of the shift in the driven quadruple resonance
frequency as a function of the normalized DC electric field strength for both charged and
uncharged drops. The continuous curve through the data points are third-order polynomial
fits. For agiven DC field strength, a higher free surface charge results in a greater decrease
in the resonant frequency.

Figure7.
Photographs obtained under strobed illumination of the first three driven resonant modes

of shape oscillations of an ultrasonically levitated drop. These large amplitude oscillations
have been obtained for water droplets using ultrasonic radiation pressure modulation.

Figure8.

Schematic description of the distribution of the three-dimensional decoupled fundamental
resonant modes. For low viscosity liquids such as water three distinct resonances can be
identified with characteristic oscillations. For higher viscosity liquids (m > 3 cP), only two
main resonances can be located. The first resonance is broad and contains the three modes
which can be individually excited with careful tuning. The second resonance is an oblate-
prolate oscillation superposed on a running wave.

Figure9.

Photographs of single video frames recorded at 30 fps showing the morphologies of the
various three-dimensional /=2 oscillation modes. a: Axisymmetric 1=2, k=0 oscillations; b:
1=2, k=I oscillations, c: 1=2, k=2 oscillations; d: oblate-prolate and running wave mode.
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Figure 10.

Plot of the photo-detector response as a function of the time-varying electric field frequency
exhibiting hysteresis. The sub-harmonic response at f of the /=2 mode was monitored with
a lock-in amplifier. During the frequency upsweep, the response amplitude suddenly
increases at 66-67 Hz. During the downsweep, the amplitude continues to increase until it
abruptly drops at about 57 Hz, where it attains the original value. This sudden decrease is
preceded by the onset of shape instability.

Figure 11.

Plots of the photo-detector responses as functions of the time-varying E Field frequency
for different E field magnitudes. The 1=2 mode response at 2f was measured with alock-in
amplifier. (a): Drop oscillation amplitude for two different E field values. The shift in the
maxima gives a measure of the resonance frequency shift. (b) Phase of the drop oscillation
with respect to the driving E-field as a function of the E-field frequency at two different E-
field values. The resonance frequency shift is measured where the curves cross the 90° line.
(c) Same as (a) for five E-field values. The second peak at E=6.05kV/cm is due to the
excitation of the running wave mode at large oscillation amplitude.

Figure 12.

Plot of the time dependent C,(t) Legendre coefficient obtained from the analysis of
digitized high-speed video recordings of the free-decay phase of a 3mm diameter water-
glycerol drop. The continuous line is a fit of the data using an exponentialy decaying
sinusoidal time dependence optimized for frequency match at large amplitude oscillations.
The shift in the resonance frequency is clearly demonstrated by the increasing mismatch
between the fit and the data at low amplitude oscillations.

Figure 13.

Plot of the free-decay relative frequency shift for the fundamental axisymmetric quadruple
mode as a function of the normalized amplitude. The relative frequency shift is obtained by
using the ratio of the frequency measured at the last two cycles to the frequency measured
at the first two cycles. The normalized amplitude is talc ulated by comparing the maximum
vertical amplitude (in the prolate shape) at first cycle with respect to the equilibrium static
shape of the levitated drop.
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Figure 14.

Plots of the time dependence and FFTs of the first five Legendre coefficients during
steady-state drive and free-decay phases of a sub-harmonically excited water-glycerol drop
by atime-varying electric field. (a) Amplitude of the Legendre coefficients as a function of
time. (b) FFTs of the first five Legendre coefficients. In this particular case, the electric
force oscillates at 140 Hz and the largest amplitude drop oscillatory response is at 70 Hz.
The /=3 mode is aso driven directly at 140 Hz at smaller amplitude because it is more
highly damped and because of the slight mismatch between its resonance frequency and
the electric field drive frequency.

Figure 15.

Superposed plots of the calculated time dependence of the Legendre coefficients ¢z (t) and
C,(t) at the low amplitude end of the free-decay phase of an oscillating 3 mm diameter
water droplet. As the amplitude of the entrained oscillations due to the fundamental mode
C,(t) decreases, higher frequency components are more apparent. In particular, a
component near triple the fundamental mode frequency begins to be more clearly defined
with decreasing fundamental mode amplitude.

Figure 16.

Time dependence (a) and FFTs (b) of the first five Legendre coefficients of a water-
glycerol drop excited into primary resonant oscillations. In this case the electric force
oscillates at 60 Hz, and the largest amplitude oscillatory response of the quadruple mode
is at 60 Hz. No odd-numbered oscillations are excited to a significant extent. The decay
trace envelope for C,(t) is more symmetrical (compared with that in figure 14a) due to a
lesser static drop distortion. The frequency component at 120 Hz for the higher even
numbered Legendre coefficients cannot yet be explained.

Figure 17.

Time dependence of the first five Legendre coefficients for a water droplet in the driven and
free-decay phases. The initial oscillations are in the /=4 mode, and are directly excited into
primary resonance by an electric force oscillating at 143.2 Hz. Fairly large amplitude
synchronous oscillations are detected for both /=2 and /=6 shapes, as well as a noticeable
=3 component. The natural resonant oscillations of the 1=2 mode appear at the end of the
decay phase.
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Figure 18.

Time dependence of afirst five Legendre coefficients for a rotating water drop acoustically
positioned in microgravity. The 1=4 mode oscillations are initially excited by modulation of
the acoustic radiation pressure, and the free-decay phase is initiated by turning off the
amplitude modulation. The equilibrium shape of the drop is slightly oblate (¢2= -O. 15) due
to rotation and acoustic radiation stresses. The odd-numbered coefficients response is
negligible, and in contrast with the ground-based results, the dominance of the natural
frequency of the fundamental mode (I=2) is immediate upon the termination of the /=4
mode drive.

Figure 19.

Results of the analysis of the driven and free-decay phases of a rotating drop in
microgravity and initially driven into the /=4 mode oscillations by acoustic radiation
pressure modulation. The data were obtained from 16 mm cinefilm records exposed at 400
frames/second. The noisier quality of the data stems from the non-ideal lighting
characteristics which create spurious reflections and highlights on the drop images. These
results are very similar to those obtained with droplets levitated on Earth, except for the
earlier appearance of the fundamental natural mode at the onset of free-decay.
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Figure 1.

Schematic description of the experimental apparatus. A drop is shown frecly suspended between the driver and
reflector of a single axis ultrasonic levitator. A high voltage amplifier driven by a low frequency (DC to 1 kHz)
function generator is connected [0 the reflector, and generates the DC and AC high voltages. The drop motion is
recorded by a ccd video camera connected to a recorder and to a microprocessor with a real-time 30 fps frame
grabber. For high frame rate application, the ccd camera is replaced by a Kodak Spin Physics high speed camera
and recording system. The drop shape can also be monitored by projecting the shadow of the levitated back-
illuminated drop onto a pholo-detector. The output of this photo-detector is amplified and fed into a digital
oscilloscope and spectrum analyzer.
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Figure 3.

Plots of the measured aspect ratio a/b of a levitated water-glycerol drop asafunction of [hc value of [he static
electric field and for three different fixed sound pressure levels. The drop profile isinitially oblatein the absence
of any electricficld due [othe ultrasonic radiation stresses. The action of aDC (static) eectric field is [0 reduce
the drop aspectratio, i.e. 10 force the drop shape into a more spherica shape. Forthcdcousticlevels used in [his

cxample, even high electric field stength up to breakdown vaiue did not force the drop back into an ideal
spherical geometry (a/b=1.0).



Figure 4.

I"holographs of a sequence of static drop shapes for a fixed ultrasonic pressure andincreasing DC eectric field
strength (from 1to10kV/cm). For alarge enough drop, prolate shapes can beobtained withinthe allowable
clectric field strength. A noticeable asymmetry can be observed at [he high end ol the electric field valucs.
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Figure s.

Plot of the results of measurementsof the shift in the driven quadrupole (I=2, k=0) resonance frequency as a
function of the drop static oblate distortion (expressed by [he aspectratio a/b). These results were obtained during
short-duration periods of low gravity, and [hey are dtrictly relative measurements. Eachdata point corresponds to
two consccutive measurements: ONC at a/b near 1.0 and another one a a relevant higher value of the aspect ratio,
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Plot of the results of measure.nicnts of the shift in the driven quadrupole resonance frequency as afunction of the
normalized DC clectric field strength for both charged and uncharged drops. ! 1¢ continuous” curve through the
data points arc Ihird-order polynomial fits. For a given DC ficld strength, @ Migher {ree surface charge results in a
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Figure 8.

Schematic description of [he distribution of the three-dimensional decoupled fundamental resonant modes. For
low viscosity liquids such as water three distinct resonances canbe identified with characteristic oscillations, For
higher viscosity liquids (n> 3 ¢P), only two main resonances canbe located. The firstresonance is broad and

contains the three modes which canbe individually excited with careful tuning The second resonance iS an
oblatc-prolate oscillation superposed on a running wave,
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Figure 10. . . . R . e .
Plot of the photo-detector response as a function of the time-varying electric field {requency exhibiting hysteresis,

The sub-harmonic response at f of the /=2 mode was monitored witha lock-in amplificr. During the frequency

upsweep, the response amplitude suddenly increases at 66-67 Hy. During the downswech » e amplitude continues
to increase until it abruptly drops at about 57 Hz, where it attains the original Value. This sudden decrease is

preceded by the onset of shape instability.
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Plots of the photo-detector responses as functions of the time-varying E Field frequency for different E field

magnitudes. The 1=2 mode response at 2f was measured with a lock-in amplifier.

(a): Drop oscillation amplitude

for two different E field values. The shift in the maxima gives a measure of the resonance frequency shift. (b)
Phase of the drop oscillation with respect to the driving E-field as a function of theE-field frequency at two
different E-field values. The resonance frequency shift is measured where the curve: crossthe 90° line. (c) Same
as (a) for five E-field values. The second peak at E=6.05kV/cm is ductothe excitation of the running wave mode

at large oscillation amplitude.
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Figure 12, L ) .
Plot of the time dependent c2 ([) Legendre cocfficient obtained from the analysis Of digitized high-speed video
recordings of the free-decay phase of a 3mm diameter water-glycerol drop. The continuous line is a fit of the data
using an exponentially decaying sinusoidal time dependence optimized for frequency match at large amplitude
oscillations. The shiftin the resonance frequency at large amplitude is clearly demonstrated by the increasing
mismatch between the fit and the dots at low amplitude oscillations.
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static shape of the levitated drop.
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Plots of the time dependence and FFTs of the first five Legendre coellicients during steady-state drive and free-
decay phases of asub-harmonically excited wa[cr-glycerol drop by a time-varying clectric field. (8) Amplitude of
the Legendre cocfficients as a function of time. (b) FET's of the first five Leg end recoefficients. In [his particular
case, theelecuric force oscillates at 140 Hz and the largest amplitude drop oscillatory response is at 70 Hz. The
[=3mode is also driven directly at 140 Hz at smaller amplitude because it is more highly damped and because of
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the slight mismatch between its resonance frequency anti the elec tric ficld drive frequency.
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Figure 15.
Superposed plots of the calculated ime dependence of the Legendre coefficients ¢ ([) and cq (t) atthe low

amplitude end of the freeclecfiy phase of an oscillating 3 mm diameter water droplet, As the amplitude of the
entrained oscillations duc to the fundamental mode c2 (t) decreases, higher frequency components are more
apparent.In particular, @ component near triple the fundamental mode frequency begins to be more clearly
defined with decreasing fundamental mode amplitude.
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Figure 16.

Time dependence (a) and FFTs (b) of the first five Legendre cocfficientsof a ¥
primary resonant oscillations. In [his cascthe electric force oscillatesat 60 H7, and the largest amplitude
oscillatory response of the quadrupole mode is at 60 Hz. No odd-numbered oscillations are excited to a significant
extent. The decay trace envelope forc 2 (t) is more symmetrical (compared with that in figure 14a) duc t0a
lesser static drop distortion. ‘f he frequency component at 120 Hz for the higher even numbered Legendre

cocflicients cannot yet be explained.
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Time dependence of the first five Legendre cocfficicuts fNF awater dropletin the
The initial oscillations arc in the (=4 mode, and arc directly cxcitedinto primary
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driven and free-dcc:ty phases.
resonance by an electric force

oscillating at 143.2 Hz. Fairly large amplitude synchronous oscillations &€ detected for both I=2 and i=6  sbapcs,
as well as a noticeable =3 component. The natural resonant oscillations of the 1: 2 mode appear at the end of the

decay phase.
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Time dependence of afirst five Legendre coefficients for a rotating water drop acoustically positioned in
microgravity. Thel=4 mode oscillations are initially excited by niodulation of the acoustic rudiation pressure, and
the free-decay phase is initiated by turning off the amplitude modulation. The equilibriumshape of the drop is
sightly oblate(cp=-(). 15) ducto rotation and acoustic radiation stresses. The odd-numbered coc(ficients response

is negligible, anti in contrast with the ground-based results, the dominance ol the natural frequency of the

fundamental mode (/=2) isimmediate upon the termination of the /=4 mode drive.
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Figure 19.

Results of the analysis of [he driven and free-decay phases of arotating dropinmicrogravity and initially driven
into the /=4 mode oscillations by acoustic radiation pressure modulation. 1 he data were obtained from 16 mm
cinefilm records exposed at 400" fr~nws/second. The noisier quality of the datastems from the non-ideal lighting
characteristics Which create spurious reflections and highlights on the dropimages. Theseresults are Very similar
[o [hose obtained withdropletslevitated on Ear[h, except for the carlier appearance of the fundamental natural
modeat the onsetof free.dcc;iy.



